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Rigid Body Dynamics

Rigid body dynamics is the physical simulation of objects subject to external
forces such as gravity and collisions. These bodies are rigid in the sense that
they will not deform due to these forces. Newton’s second law of motion is
used to integrate the position of an object over time and collision forces are
handled using two different techniques: impulses and springs. Two methods of
integration are demonstrated, Euler, for simplicity, and the fourth order Runge-
Kutta method (RK4) for accuracy.

Euler’s Method

All numerical integration methods make use of initial value and a function that
expresses the rate of change of that quantity with respect to time.

yi+1 = yi + f(t, yi)

The simplest form of numerical integration is known as Euler’s method. This
method estimates the future value by adding a small distance along the slope
at the given point to the previous estimate. In our case, we will be doing two
euler integrations simultaneously. One to estimate the velocity and another to
estimate position using the velocity estimate just calculated.

v = v0 + at vi+1 = vi + tf ′(vi)
x = x0 + vt xi+1 = xi + tf ′(xi)

The initial velocity and position can be set arbitrarily and we solve for acceler-
ation using newtons second law of motion:

f = ma or a = f
m

Rotational Motion and the Inertial Tensor

These equations handle translational motion, rotational motion is similar, how-
ever the rotational mass of an object is less intuitive as we dont frequently
discuss the moment of inertia or how much torque is required to rotate an ob-
ject. This quantity is further complicated by the ability to rotate around any
arbitrary axis.

α = τI−1

ω = ω0 + αt

M = M0 +M ∗

 0 −ω.z ω.y
ω.z 0 −ω.x
−ω.y ω.x 0

 ∗ t
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Inertial Tensor

The inertial tensor, I, is a 3x3 matrix that describes how hard it is to rotate an
object around any arbitrary axis. Equations exist to calculate the inertia tensor
for common objects such as spheres, cubes, cylinders, hoops etc. And it is
possible to calculate an intertial tensor using calculus for an object of arbitrary
shape and uniform density. An important note is that the inertia tensor depends
on the bodies orientation. If the body rotates, the inertial tensor changes. For
this reason we calculate the inertial tensor in an initial orientation and solve for
the rotated tensor using the current orientation matrix.
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
cube =

 m
12 (y2 + z2) 0 0

0 m
12 (x2 + z2) 0

0 0 m
12 (x2 + y2)


I =
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∫
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∫
xz dm
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
Collision Detection

At this point the objects will translate and rotate in response to an applied force
and torque. We must still apply these forces to bodies in response to collisions
with other objects and planes defining the world.

The distance from a point to a plane can be determined as follows:

d = |Ax+By+Cz+D|√
A2+B2+C2

If the plane’s normal vector is of unit length, then this simplifies to:

d = n · (x, y, z) +D

In between every iteration of integration we check if the distance is between
some value epsilon. If d < ε then we consider the objects to have collided. If it
has moved too far into the plane, we discard all calculated results and restart
the simulation with a smaller time step. In order to perform this computation in
real time, we greatly simplify the object by only considering the eight verticies
of an axis aligned bounding box or by considering a single point of a bounding
sphere.
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Impulse Response

After it is determined that a collision has occurred, we can apply the impulse
response. Since the world is considered immovable it is assumed to have infinite
mass. This greatly simplifies the impulse response equation and we present this
version first. This equation is similar to that of vector reflection, but has added
terms to account for mass.

ρ = −(1+e)vrel
1
m+n·(I−1∗(r×n))

* The constant e represents the coefficient of restitution, a value that represents
the amount of energy lost in the collision.

* The vrel value indicates the relative velocity between the two colliding objects,
in this case since the world plane will always have a zero velocity, it is simply
the dot product of the velocity of the colliding object with the plane’s normal.

* The radius value, r, is the distance between the point of collision and the
center of mass of the object. The resulting ρ is in units of momentum (ρ = mv)

The complete impulse response equation follows:

ρ = −(1+e)vrel
1

ma
+ 1

mb
+n·(I−1

a ∗(ra×n))+n·(I−1
b
∗(rb×n))

We apply the final results to our velocity and angular velocity state variables
as follows:
v = v0 + ρ

m
ω = ω0 + I−1(ρ× r)

Spring based collisions

A spring force can be modeled as follows:
F = −kd where
k = spring constant
d = displacement

Spring based collision response uses stiff springs to apply the force required to
prevent two objects from interpenetrating. We let displacement = 1

d2 in order
to apply an exponentially large force when the distance between the plane and
the object approach zero. Collisions between bodies can be handled in the same
way and often resting contact is best handled using spring forces instead a series
of impulse responses.
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Runge Kutta Method of order four (RK4)

This method is similar to euler’s method except a better estimate for the rate
of change is used. Euler integration fails to accurately describe any differential
equation that involves exponential change due to it’s linear method of esti-
mation. These numerical inaccuracies over time can cause issues. For example,
using euler integration in orbiting simulations such as n-body problems can lead
to overestimations that result in a body slowly drifting away from it’s desired
orbit over time. The lorenz equation is another situation where simple euler
integration fails to maintain the correct trajectories. However, RK4 requires
that we provide a function for future accelerations and velocities. Creating a
function for these future values is not immediately intuitive.

RK4:
yi+1 = yi + h

6 (k1 + 2k2 + 2k3 + k4)

Where:
k1 = f(ti, yi)
k2 = f(ti + h

2 , yi + h
2 s1)

k3 = f(ti + h
2 , yi + h

2 s2)
k4 = f(ti + h, yi + hs3)
h = stepsize
ti = timevalue
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